SOD2” />

Create Account | Sign In: Author or Forum

 
 
News  |  Journals  |  Conferences  |  Blogs  |  Articles  |  Forums  |  Twitter    
 

 Headlines:

 

Category: Orthopedics | Pathology | Rheumatology | Journal

Back to Journal Articles

Arthritis Cartilage Shows Mitochondrial Dysfunction

Last Updated: November 19, 2012.

 

Oxidative damage also noted; both linked to the downregulation of SOD2

Share |

Comments: (0)

Tell-a-Friend

 

  Related
 
Cartilage from osteoarthritis patients shows greater oxidative damage and mitochondrial dysfunction than healthy cartilage, which is associated with the downregulation of the superoxide dismutase 2 (SOD2) gene, according to a study published online Nov. 8 in Arthritis & Rheumatism.

MONDAY, Nov. 19 (HealthDay News) -- Cartilage from osteoarthritis patients shows greater oxidative damage and mitochondrial dysfunction than healthy cartilage, which is associated with the downregulation of the superoxide dismutase 2 (SOD2) gene, according to a study published online Nov. 8 in Arthritis & Rheumatism.

To examine the impact of downregulation of SOD2 in osteoarthritis-affected mitochondria in the context of oxidative damage and mitochondrial dysfunction in chondrocytes, Christos Gavriilidis, Ph.D., from Newcastle University in the United Kingdom, and colleagues compared lipid peroxidation, mitochondrial DNA (mtDNA) integrity, and mitochondrial respiration in cartilage from patients with osteoarthritis and from healthy patients with neck of femur fracture.

The researchers found that osteoarthritis cartilage had higher levels of lipid peroxidation, while osteoarthritis chondrocytes had lower spare respiratory capacity and higher proton leak, compared with cartilage from controls. There were no differences in the level of mitochondrial DNA damage between osteoarthritis and control chondrocytes, and osteoarthritis cartilage showed only very low levels of somatic, large-scale mtDNA rearrangements. Chondrocytes depleted of SOD2 showed similar characteristics to those of osteoarthritis cartilage in terms of having greater lipid peroxidation, lower spare respiratory capacity, and higher proton leak, but unlike osteoarthritis chondrocytes, they had significant increases in mtDNA strand breaks.

"These findings suggest that SOD2 depletion in chondrocytes leads to oxidative damage and mitochondrial dysfunction potentially contributing to osteoarthritis," Gavriilidis and colleagues conclude.

Abstract
Full Text (subscription or payment may be required)

Copyright © 2012 HealthDay. All rights reserved.


Previous: Education Program Delivered in Routine Care Beneficial in T1DM Next: Pediatrician Adoption of EHR Systems Lagging Behind

Reader comments on this article are listed below. Review our comments policy.


Submit your opinion:

Name:

Email:

Location:

URL:

Remember my personal information

Notify me of follow-up comments?

advertisement.gif (61x7 -- 0 bytes)
 

Are you a Doctor, Pharmacist, PA or a Nurse?

Join the Doctors Lounge online medical community

  • Editorial activities: Publish, peer review, edit online articles.

  • Ask a Doctor Teams: Respond to patient questions and discuss challenging presentations with other members.

Doctors Lounge Membership Application

 
     

 advertisement.gif (61x7 -- 0 bytes)

 

 

Useful Sites
MediLexicon
  Tools & Services: Follow DoctorsLounge on Twitter Follow us on Twitter | RSS News | Newsletter | Contact us
Copyright © 2001-2014
Doctors Lounge.
All rights reserved.

Medical Reference:
Diseases | Symptoms
Drugs | Labs | Procedures
Software | Tutorials

Advertising
Links | Humor
Forum Archive
CME | Conferences

Privacy Statement
Terms & Conditions
Editorial Board
About us | Email

This website is certified by Health On the Net Foundation. Click to verify. This site complies with the HONcode standard for trustworthy health information:
verify here.