Advertisement
 

doctorslounge.com

 
Powered by
Careerbuilder

 

                    Home  |  Forums  |  Humor  |  Advertising  |  Contact
   Ask a Doctor

   News via RSS

   Newsletter

   Neurology

   News

 

 Conferences


   CME

   Forum Archives

   Diseases

   Symptoms

   Labs

   Procedures

   Drugs

   Links
   Specialties

   Cardiology

   Dermatology

   Endocrinology

   Fertility

   Gastroenterology

   Gynecology

   Hematology

   Infections

   Nephrology

   Neurology

   Oncology

   Orthopedics

   Pediatrics

   Pharmacy

   Primary Care

   Psychiatry

   Pulmonology

   Rheumatology

   Surgery

   Urology

   Other Sections

   Membership

   Research Tools

   Medical Tutorials

   Medical Software

 

 Headlines:

 
 

Back to Neurology Articles

Saturday 22nd July, 2006

 

Scientists in Melbourne have found a protein in the brain that can save neurons from dying after incidents such as stroke.

 
 

tellfrnd.gif (30x26 -- 1330 bytes)send to a friend
 
prntfrnd.gif (30x26 -- 1309 bytes)printer friendly version
 

  Related
 
  Aspirin as effective as warfarin and safer in stroke prevention  
   

Scientists at Melbourne's Howard Florey Institute have found a protein in the brain that can save neurons from dying after experiencing traumatic brain injury from incidents such as stroke, car accidents and falls.

The team, led by Professor Seong-Seng Tan, has discovered that this naturally occurring protein, called BP5, is produced more than usual in brain cells after they have experienced traumatic injury.

Prof Tan said that because this protein is "over-expressed", it can prevent the neuron's cells from dying, thus reducing brain damage.

"BP5's pattern of expression indicates that it allows neurons to survive in a stressed environment," Professor Tan said.

"We have tested this hypothesis in mice by expressing BP5 in stressed neurons and this proof-of-principle experiment showed that BP5 can prevent neurons from undergoing cell death.

"BP5 works by using the cell's waste disposal system to flush away toxic and damaged proteins produced after injury, which appears to tip the balance towards nerve cell survival, instead of death," he said.

Professor Tan is the first to show that this mechanism can be fruitfully manipulated to prevent brain cells from dying. For this reason, his work has been published by the Journal of Neuroscience, the peak body journal of the American Society for Neuroscience.

"Now our challenge is to understand how BP5 performs it neuron-saving function and develop drugs that can do the same thing," Professor Tan said.

"Ultimately, we want to deliver the drug to patients suffering brain injury from stroke or trauma so save as many neurons as possible.

"Such a drug would limit damage to the brain after the injury, as well as the subsequent few days when injured nerves release 'suicide factors' that cause surrounding, healthy neurons to die en masse.

advertisement.gif (61x7 -- 0 bytes)
 

Are you a doctor or a nurse?

Do you want to join the Doctors Lounge online medical community?

Participate in editorial activities (publish, peer review, edit) and give a helping hand to the largest online community of patients.

Click on the link below to see the requirements:

Doctors Lounge Membership Application


"This treatment to prevent brain damage has wide application and could be given to car accident and assault victims, people undergoing radiotherapy for brain tumors, premature babies that need to be induced, and stroke patients.

"While we still have a long way to go before such a drug will be available, this research is a promising step forward in the development of an effective treatment for traumatic brain injury," Professor Tan said.

Sources

Howard Florey Institute, Melbourne, Australia.

 

 advertisement.gif (61x7 -- 0 bytes)

 

 



We subscribe to the HONcode principles of the HON Foundation. Click to verify.
We subscribe to the HONcode principles. Verify here

Privacy Statement | Terms & Conditions | Editorial Board | About us
Copyright 2001-2012 DoctorsLounge. All rights reserved.